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ABSTRACT
In planta analysis of protein Inaction in a crop plant could lead to improvements in understanding

protein structure/function relationships as well as selective agronomic or end product quality
improvements. The requirements for successful in planta analysis are a high mutation rate, an efficient
screening method, and a trait with high heritability. Two ideal targets for functional analysis are the
l'uroindoline a and Pnroindoline b (i'ina and Pin!,, respectively) genes, which together compose the
wheat ( Triticwm aestivurn L.) Ha bet's that controls grain texture and many wheat end-use properties.
Puroindolines (PINs) together impart stilt texttne, and mutations in either PIN result In hard seed
texture. Studies of the PINs' mode of action are limited by low allelic variation. To create new Pin alleles
and identify critical functionIeteruuning legions, Pin point mutations were created in. planta via EMS
treatment of a soft wheat. Grain hardness oF 46 unique PIN missense alleles was their using
segregating F2 :F3 populations. The impaet..of individual missense alleles upon PIN function, as measured
by grain hardness, ranged from neutral (74%) to intermnediale to functionfunction abolishing. The percentage of
function-abolishing mutations among mutations occurring in both PINA and l'INB was higher for PINB.
indicating that IINB is more critical to overall i-ia function. This is contrary to expectations in that PINB is
not as well conserved as PINA. All fiinction-;ibolisliing mutations resulted front st.m-ncturelisn.tpting
mutations or from mnissense mutations occurring near the Tryptophan-rich region. ]'his study
demonstrates the feasibility of in jib-into functional analysis of wheat proteins and that the Tryptoplian-
rich region is the most important region of both PINA and PINB.

N
ATURAL selection has captured a relatively small
subset of potentially useful protein sequences.

Unraveling the critical features of proteins via un-
demanding the process of their evolution is a powerful
approach for proteins present in many diverse species
(BA5Hr0RD et at 1987; HAMPSEY et at 1988). However,
this approach is not feasible for the wheat pttroindo-
lines (flNs) that are present only in hexaploid wheat
and related species (MASSA and MORRIS 2006). The
PINS are unique in structure in having a tryptophan-
rich domain and are members of the protease in-
hibitor/seed storage/lipid transfer protein family
(FF00234) (FINN et at 2008).

The tryptophan-rich domain has been hypothesized
to control PIN function (GiRoux and MORRIS 1997), but.
there is no unbiased direct evidence for this since
previous studies have focused on the iryptophan box
alone (EvltRD et at 2008)-A nonbiased approach would
consist of random mutagenesis followed by functional
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analysis (BowlE ci at 1990). This approach has been
used extensively for proteins that call expressed
in vitro using either random (TARtJN ci al. 1998; Guo
ci at 2004; SMITH and RUNES 2006; CEoRc;EIiS et at

2007) or site-directed mutations (MIYAI-IARA at at 2008;
O5MANI ci at 2008). However, functional analysis of
many plant proteins in vitro may not he comparable to
in pianta analysis. In the case of puroindolines, there is
no in vitro assay, that properly mimics the synergistic
bindingofPlNA and PINE tostatch granules oris as easy
(.0 measure as grain hardness. Therefore, creation and
analysis of a large number of new alleles in wheat
in planta is air 	 approach to dissect PIN function,

The absence of high-throughput transformation
and/or functional screening methods in most crop
plants is the largest obstacle in the way of in planta
protein functional analysis. However, high-throughput
Zn vitro random or targeted mutagenesis followed
by functional analysis has been demonstrated in Arahi-

d4sac t/zaiiana (DuNNING at at 2007) and Nicotiana
bent/tamiana ( BOTER at al. 2007). Traditional in pia.-nta
mutagenesis followed by analysis of loss-of-function
mutations has been used to clone unknown genes
(XIONG ci at 2001) or to define function for candidate
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genes (HAItUAMPmIs et at 2001; Qi el at 2006). A high-
throughput in planta functional approach for PINA and
PINB seems attractive for three reasons. First, the EMS
mutation rate in wheat is higher than in any other plant
(SIAnE ci at 2005; Fnz ci at 2009a). Second, PINS
control the vast majority of variation in grain hardness
(CAMPBELL c/aL 1999). Finally, a small-scale preliminary
study indicated the feasibility of this approach (Fa:z
ci at 2009a).

PJNA and PINB are cysteine-rich proteins unique in
having a tryptophan-rich domain (BL0cHET c/at 1993)
and together compose the wheat Hardness (Ha) locus
(Ginoux and MORRIS 1998; WANJUGI ci at 2007a). Ha is
located on chromosome 5DS and is the major de-
terminant of wheat endosperm texture (MAT-TERN
c/at 1973; LAW ci at 1978; CAMPBELL c/at 1999). son
texture (Ha) results when both Pin genes are wild type
(Pina-Dia, Pinb-D1?s) while hard texture (ha) results
from mutations in eitherPin (Gtaoux and MORRIS 1997,
1998). Transgenic studies in rice (KRISI:INAMURTHY and
GIROUX 2001), wheat (BlotcuEk ci at 2002; MARTIN
ci at 2006), and corn (ZHANG ci al. 2009) have
demonstrated that Pin mutations are causative to
hard grail] texture. PINA and PINB are not function-
ally interchangeable and control grain hardness via
cooperative binding to starch granules (Hocc ci at
2004; SWAN c/at 2006; WANJUGI et at 2007a; FEIZ c/at
20091)). PIN binding to starch granules is mediated by
polar lipids (GRICENBL4'rI' ci at 1995) and PIN abun-
dance is correlated with seed polar lipid content (Ftiiz
ci at 2009b), Variation in PIN function affects grain
hardness along with nearly all end product quality traits
(Hocc; ci at 2005; MARTIN ci. at 2007, 2008; WANJUGI
ci at 2007b; FEIz ci at 2008). Determining PINS'
function-determining regions could lead to greater
knowledge of their mode of action and to wheat quality
improvements. Current PIN functional analyses have
been limited to in vitro tests of binding to each other
(Z!EIANN ci at 2008) or to yeast membranes (EVRARD
c/at 2008).

Here, we report the creation and functional analysis
in plania of new alleles of PINA and PINB. This is the
first successful in plan/a functional analysis of a crop
plant protein.

MATERIALS AND METHODS

Creation and screening of an EMS-induced population: A
wheat EMS-induced M population was created using a pro-
tbcol similar to that of SIAnE c/. al (2005) with some modifica-
tions (Friz c/at 2009a). Approximately 10,000 M0 seeds of the
soft white spring cultivar Alpowa (P1 566596) were EMS
inutagenized and grown as previously described (Fuz et at.
2009a) and a single head was harvested from the 3000 fertile Mt
plants. The first group of 1000 M 1 :M2 heads was planted in May
2006 and seed was recovered from the 630 fertile M 2 rows
(Fmz el at 20Th). The remaining 2000 M 1 :M2 head rows were
planted in May 2007 at: the Arthur H. Post. Field Research farm

near Bozeman, Montanawith within-row plant spacing of 15cm
with 30 cm between rows and seed was harvested from the 1700
fertilc M2 rows. Leaf tissue for DNA preparations was collected
and pooled at the two- to three-leaf stage from at least 4 plants
per ro'c The PCR amplification conditions, product purifica-
tion, and direct sequencing protocol of Fitiz c/at (2009a) were
used in this study. The CAlM and Pregap4 programs from
Staden Package vi .6.0, 2004 (http://staden.sourceforge.net/
staden_homehtml) were used to analyze sequences. Sorting
intolerant from loleraut (51F-l') (Nc and HENIKOFF 2003) was
used to predict rue tentative impact of mutations oil
function.

Creation of F2 populations: Four M 3 seeds from each Pin
mutation line were planted in the greenhouse and used for
direct sequencing of Pina and Pinb. Pin inn tanon-carrying
plants were used as a pollen source in crosses to nonmuta-
genized Alpowa. One hundred F, F2 seeds from each cross
along with Alpowa parental seeds were planted in May 2008 at
the Arthur H. Post Field Research farm near liozeriran,
Montana with with in-row plant spacing of 15 em with 30 cm
between rows. Leaves were collected from 48 individual F2
plants front each cross at the two- to three-leaf stage for
genotypitig.

Genotyping and phenotyping of F2 populations: The
primer pairs and PCR conditions of FEIZ c/ at (2009a) were
used to genotype F2 plants growing in the field. Genotyping
was completed via differential restriction digestion of Pina and
Pinh mutant alleles (supporting information, Table Si) or via
direct. sequencing. 17 2 :1`3 seeds were harvested from single F2
plants homozygous for the presence (denoted as Dlx in
RESULTS) or absence (denoted as Dia) of a I'm mutation.
Two composites of 150 F2:F3 seeds were prepared from each of
the two homozygous Pin allele groups for each cross with each
composite composed of 30 seeds from five random F 2 plants
from the plants grown in the field in 2008. Grain hardness and
kernel weight were determined twice from samples of 50 seeds
for each composite as well as Alpowa nonmutant seeds, using a
single-kernel characterization system (SKCS) (l'erten Instru-
ments, Springfield, IL). The same planting, seed bulking, and
SKCS analysis process was performed on F 3;F4 seeds derived
from the four E2 :F3 mutant populations analyzed by FEIz ci at
(2009a). The grain hardness and kernel weight means were
used for analysis.

Analysis of variance was computed for grain hardness and
kernel weight by including seed composite and genotype class
combinations in the model using PROC GLM in SAS (SAS
INSTITUTE 2004). The error represented genotype class
combination by composite interaction. The impact of new
alleles oil grain characteristics was assessed by comparing the
difference between mutant arid wild-type class means for each
population.

Expected EMS-induced mutation ratio calculations: Ob-
served mutation class ratios are presented as a simple pro-
portion of total mutations. Expected mutation ratios were
derived by calculating the proportion of all possible EMS-
induced tt-ansition mutations within each codon and the
subsequent possible amino acid changes.

RESULTS

-

-

Creation of novel Puroindoline alleles and segregat-
ing F2 populations: To conduct in plan/a functional
analysis of the Puroindolines we developed an EMS-
tnutagenized population using the soft white spring
wheat Alpowa. Seventy-one Pina alleles were identi-
fied, of which there were 37 missense, 11 nonsense,
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TABLE I

Pin mutation frequency and density in Alpowa EMS-induced population

Mutation frequency via direct
plienotyping and sequencing'

Missense
Nonsense
Silent
Total

Mutation frequency na sequencin
Missense
Nonsense
Silent
Total
Mutation density

Observed in utation class ratios
Missense
Nonsense
Silent

Expected mutationtation class ratiost
Missense
Nonsense
Silent

Chi-sq uare P-value

Pint'

37
11
23
71

33
6

23
62

1/12 kb

0.53
0.1
0.37

0.56
0.1
0.34
0.52

Pinb

31
12
34
77

27
9

32
68

1/I] kb

0.4
0.13
0.47

0.55
0.11
0.34

<0.01

Both Pins

68
23
57

148

60
15
55

130
1/11.5 kb

0.46
0.12
0.42

0.56
0.1
0.134

<0.01

'Total cumulative mutation frequency found via plienotyping of 630 and direct sequencing of 1700 M2
Alpowa lines.

'The frequency of mutations found by direct sequencing of 1700 M2 Alpowa lines.
'The mutation density was calculated using the frequenc y of mutations found va direct sequencing of 1 700

M2 Alpowa lines.
Expected ratio of three types of mutations front 	 was calculated using all potential nucleotide suhsti-

ttttions expected front 	 transition mutations (C to A or C to T)
'Jtvalues are from chi-square tests that were used to compare the number of observed and expected mutation

types.

and 23 silent mutations (Table 1). 01 the 77 alleles of
Pinb, we identified 31 missense, 12 nonsense, and 34
silent mutations. Pina and Pinb mutation density was
calculated from the frequency of mutations identified
via direct sequencing. We arrived at a mutation
densify of 1/11.5 kb and the frequencies of each
mutation type were in close agreement with their
predicted frequencies for Pina. But more silent and
fewer missense mutations were observed than ex-
pected for Pinb.

To test the effects of each unique missense Pin
allele upon grain hardness, segregating F 2 popula-
tions were developed by crossing 25 Pina and 21 Pinb
missense-carrying M 3 plants back to non niutagenized
Alpowa. Two identical Pinb, one silent Pina, two
nonsense Pina, and two nonsense Pinb mutations
were also crossed back to Alpowa as controls. Forty-
six or 48 F9 plants per population were genotyped via
restriction digestion of PCR-amplified Pina or Pinb or
by direct sequencing, respectively. Ninety-four per-
cent of the F2 populations showed 1:2:1 segregation
ratios (Table SI). Three populations deviated from
expectations in that the PINAV24I and PTNBP4]S

populations contained more wild-type Pin allele
plants and the PINBT67I population contained more
mutant plants than expected.

Mutations in the Puroindoline proteins cause
changes in protein functionality as measured by grain
texture: For each Pin missense allele tested, comparison
groups consisted of 17 2 :17 3 lines homozygoLts positive or
negative for the induced mutation. The net intr-apopu-
lation grain hardness diflerence between homozygote
Pin mutant and wild-type groups was compared (Table
S2 and Figure]). Two nonsense and one silentmutation
for each PIN were used as controls. The high coefficient
of determination (if = 0.94) demonstrated that the
mutations control nearly all observed hardness varia-
tion. The two PINA nonsense mutations (W71 Stop and
Q93Stop) averaged a 37.8 grain hardness unit increase
while the PINB nonsense mutations (Q20Stop and
Wi 1 6Stop) averaged a 31.8 hardness unit increase.
The silent mutation in PINA (K60K) did not signifi-
cantly change grain hardness nor were there significant
differences between the duplicate PINB mutations. The
vast majority of PJNA and PINI3 mutations were less
severe than the nonsense mtttations in terms of in-
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FIGURE 1.—The grain hardness difference between F 2-

derived Pin homozygous mutant (Dlx) and wild-type (DIa)

groups.

creasing grain hardness. No mutations that affected
grain hardness also affected seed weight.

Direct measurement of missense mutation impacts
vs. prediction by SIFT: The SIFT program uses se-
quence homology in a protein family to predict the
impact of missense mutations on protein function. SIFT
predicted that 52% (13/25) of PINA and 52.4% (11/21)
of PINB missense mutations would severely affect pro-
tein function (Table SI). The grain hardness differ-
ences between mutant and wild-type groups of 46
analyzed PIN mutant populations were plotted against
their SIFT scores (Figure 2). Although SIFT was capable
of predicting most severe mutations, it Coiled to correctly
predict more than half of the missense mutations that
did not affect grain hardness. This may indicate that
some of the observed sequence conservation has no
direct role in controlling grain texture. Further analysis
focused on defining functional regions of PINA and
PINE where missense mutations increased grain
hardness.
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FIGURE 2.—The grain hardness difference between Pm ho-
mozygous mutant (])Ix) and wild-type (DM) groups vs. their
individual SIFT scores. SIFT scores <0.05 are predicted to he
deleterious (N(; and HENIKOFF 2003).
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Ft(;uRE 3.—The mean grain hardness difference between
lines homozygous positive or negative for individual PIN mu-
tations relative to their location. Asterisks indicate where the
hardness difference between an individual I'm mutant and its
wild-type group was significant. The open boxed area denotes
the signal peptide region while the shaded/solid boxed re-
gion denotes mature peptide sequence with the solid boxed
region indicating the trvptophan-rich loop legion. The posi-
tions of cysteines are denoted by C's. The position of the am-
plification primers is as shown.

Functional analysis of new Puroindoline alleles
demonstrates the importance of the tryptophan-rich
region: The trvptophan-rich domain of PINs is pre-
dicted to be in a coiled loop that joins the first two
a-helices of PINS (BIHAN et al. 1996). All severe (>20
hardness unit increase) PINA mutations were either in
or in the vicinity of the Trp-rich loop (Figure 3). The
only PINA severe mutation that occurred far from
the Trp loop was a Cys-Tyr substitution (C132Y) while
all severe PINB mutations were localized in the Trp-
tich loop (Figure 3). One PINB mtttation that reduced
grain hardness (P4IS) and two intermediate function
mutations (GI 11 D, RI 26K) were localized outside of
the Trp-rich loop.

Functionally important residues are conserved be-
tween PINA and PINB: PINA and PINB primary
protein sequencessequences from seven diploid wheat relatives

I
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TABLE 2

Plant material used to find the evolutionary conserved amino acids in PIN proteins

GenBank accession no.

Taxon"
	

Genome	 Source'
	

Pina	 Pint)

1)
A"
D
S
M

C

"J'ritiruns aestivum cultivar "Chinese Spring"
1. monororeurn L. subsp. aegilopoides (Link) Thell.
Aegilops tauschu Coss.
Ac. speltoides Tausch var. speltoides
Ac. coinosa Sm. in Sibth. and Sm.var. subventricosa Boiss
Ac. umbellulata Zhuk.
Ac. inarkgrafii.
Ae. uniarislata Vis.

Cbs 14108
TA183
TA1 583
TA1 793
TA2737
TA1830
TA 1906
'1A2688

X69913
I)Q269819
AY25 2029
DQ269829
DQ269846
DQ269847
DQ269848
D269849

X69912
DQ269852
AY251981
DQ269862
DQ269882
DQ269883
DQ269884
DQ269885

Taxa are listed by genome being represented and source.
'Accession identifiers: Cbs, National Small Grains Collection, Aberdeen, ID; TA, Wheat Genetics Resource Center, Kansas State

University; X, AY, and DQ, National Center for Biotechnology Information GenBank database.

were aligned (Table 2, Figure 4). Aligned separately, the
PINA and PINB sequences showed a great degree of
sequence conservation, with PINA being more highly
conserved overall across species than PINB (data not
shown). However, when aligned together, three main
features are well conserved among all PINs (Figure 4).
The first is the conservation of cysteines. These are
presumably involved in intramolecular disulfide bridges.
Second, the N-terminal region corresponding to the
processing peptide is well conserved. The third well-
conserved region is that surrounding the tryplophan-
rich loop. Every one of the nine observed severe

TABLE 3

The effect of missense mutations occurring in both PINA and
PINB on grain hardness

Hardness	 Hardness
change	 change

Region	 Allele	 (Dix—Dia)" PINBx—PINAx'

Signal peptide PINAV24I	 0.52	 —3.24
PINB V241	 —2.72

PINA G261)	 —3.00	 2.21
PINB G261)	 —0.79

Trp domain	 PINA D61N	 5.46	 18.48
PINB D63N	 23.94

PINA T651	 0.61	 28.56
PINB T671	 29.17

PINA E78K	 1.9	 45211
PINB E80K	 47.10

*Denotes significance in comparisons of the grain hardness
change between the identical mutation in PINA and PINB at
P < 0.05.

Difference in grain hardness in comparisons of two inde-
pendently derived seed composites, where each seed Compos-
ite was hoinozygous positive (Dlx) or negative (Plo) for a Pin
mutation.

Difference in impact of individual identical mutations be-
tween PINA and PINB upon grain hardness.

mutations occurred in amino acid residues that were
absolutely conserved betweertY PINA and PINB from all
eight Triticeae species. Each of these severe mutations
was either in cysteines or occurred in close proximity to
the Trp-rich loop.

Functional classes of PINA and PINB mutants:
The majority of mutations had a minimal effect (5
units) on PIN function as measured by grain hardness
(Figure 5). Of the 12 mutations that had a large effect
(>20 units) on hardness, 4 were nonsense mutations.
All nonsense mutations increased hardness >30 units,
showing that both PINs are required for full grain
softness. The 8 remaining severe missense mutations
were relatively equally distributed among PINA and
PINB. Five identical missense mutations occurred in
both PINA and PINB, with 2 occurring in the signal
peptide and 3 in the Trp-rich region (Table 3). The two
identical missense alleles found in the signal peptide
did not alter grain hardness when occurring in either
PIN. However, all three identical missense alleles within
the Trp-rich domain of PINB increased grain hardness
dramatically (18.5-45.2 uni(s) while the function of
PINA was unaffected.

DISCUSSION

PINS are unique among plant proteins in having a
tryptophan-rich hydrophobic domain. While they con-
trol grain hardness variation (GIRoux and MORRIS

1998), which affects many wheat end-product quality
traits (C,\NIPREI,L et al. 1999), their likely in vivo func-
tion relates to their antifungal properties. PINA
and PINB are effective in vitro (DUBREIL ci al. 1998;
CAPPAREI.I,1 ci al. 2005) and in vivo (KRtSHNAMURTLIY

et al. 2001) antimicrobial agents against bacterial and
fungal pathogens.

To improve understanding of PIN function, we
created air planta source of EMS-induced Pina
and Pznb mutations. Our observed mutation rate was I

I
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in 11.5 kb DNA (Table 1), twice that previously observed
in hexaploid wheat (SLADE ci at 2005). Crossing each
PIN mutation line with the wild-type parent allowed us to
perform functional analysis using F2 segregating lines.
Most missense mutations were categorized into two
groups on the basis of their grain hardness effects: a
group with little impact on function and a group that
retained little to no PIN function (Figure 3). Apart from
mutations affecting cysteines, all other function-
abolishing mutations were centered on the Trp-rich
domain, indicating that this region is the most impor-
tant, for PIN function. Many PJNA and PINB missense
mutations naturally present in hard wheats are also
centered on this domain (reviewed in Bi-iAvE and

MoRRIs 2008). Two such PINB niissense alleles
(PINBC75S and PINBW73R) were shown to negatively
affect the degree to which PINB could penetrate lipid
layers (CLIrroN ci al. 2007a,b; 2008). This finding
highlighted the key role of the Trp-rich loop in pmt
oindoline–lipid interactions.

The probability that a niissense imitation affects grain
hardness was 0.16 for IINA and 0.38 for PINB. Using
in vitro random mutagenesis, the average probability of
nonfunctional missense mutations for a human DNA
repair enzyme and a bacterial DNA polyinerase was 0.34
(Cuo ci al. 2004; Lou ci at 2007), whereas it was 0.60
when estimated within the active sites of some human,
bacteria, and viral proteins (Cuo ci at 2004). The ratio
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Of in utations destroying protein activity has been shown

to decrease in proportion to the distance from the
enzyme's active site (I owia el al. 1990; YAN0 ci aL 2008).
Here, the inactivation probability within the-Tn-p-rich
loop was 0.50 for PINA and 1.00 for PINE. Further, there
were three identical mutations within both PINA and

PINE and all three PINE mutations destroyed function
while those in PINA did not. To explain the significantly
higher inactivation value of PINB relative to PINA, we
by 	 that the PINB grain text u re-de termniiiing
function is more vulnerable to iinssense changes titan

that of PINA.
Selective pressure may result in the evolution of

proteins that are more tolerant of change and with

lowerinactivation probabilities than homologous pro-
teins (Cuo of at 2001). In studies of Ha locus genes,
MASSA and MORRIS (2006) concluded that adaptive
forces operated only at the Pina locus, resulting in
strong positive selection at this locus consistent with its
role as a plant defense gene. Consistent with the idea of
PINA Ifeing more important in plants, KRISHNAMURTHV
el al. (2001) showed that PINA was more effective than
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